Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
U
unicom
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Rosita Binns
  • unicom
  • Issues
  • #1

Closed
Open
Opened Apr 09, 2025 by Rosita Binns@rositabinns596
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations ranging from 1.5 to 70 billion specifications to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses support finding out to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial differentiating feature is its reinforcement learning (RL) action, which was utilized to fine-tune the model's actions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt more effectively to user feedback and goals, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, meaning it's equipped to break down complex queries and reason through them in a detailed way. This assisted reasoning procedure permits the model to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, logical thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion parameters, making it possible for efficient reasoning by routing questions to the most appropriate professional "clusters." This method allows the model to focus on various problem domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, setiathome.berkeley.edu more effective models to simulate the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent harmful content, and gratisafhalen.be examine models against key security requirements. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, create a limit increase request and connect to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent damaging content, and assess designs against key safety requirements. You can execute safety procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The model detail page offers essential details about the design's capabilities, pricing structure, and execution guidelines. You can find detailed use directions, consisting of sample API calls and code bits for integration. The model supports various text generation tasks, including content development, code generation, and concern answering, utilizing its support discovering optimization and CoT thinking abilities. The page also includes release options and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, enter a number of instances (between 1-100). 6. For Instance type, select your instance type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service function consents, and forum.batman.gainedge.org encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may want to examine these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the implementation is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can explore different prompts and adjust design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum results. For instance, material for inference.

This is an excellent way to explore the model's thinking and text generation abilities before incorporating it into your applications. The play ground supplies instant feedback, assisting you comprehend how the model responds to various inputs and letting you tweak your triggers for optimum results.

You can quickly test the model in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 practical techniques: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the approach that finest matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available models, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The design name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you release the model, it's recommended to examine the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the immediately produced name or produce a customized one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of circumstances (default: 1). Selecting suitable instance types and counts is crucial for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the model.

    The implementation procedure can take a number of minutes to complete.

    When implementation is total, your endpoint status will alter to InService. At this point, the model is ready to accept reasoning requests through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is total, you can invoke the design using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, setiathome.berkeley.edu you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Tidy up

    To prevent undesirable charges, bytes-the-dust.com finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious services using AWS services and accelerated compute. Currently, he is concentrated on developing methods for fine-tuning and enhancing the reasoning performance of big language models. In his spare time, Vivek takes pleasure in hiking, seeing motion pictures, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing options that help clients accelerate their AI journey and unlock company value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: rositabinns596/unicom#1