Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive abilities throughout a broad variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly surpasses human cognitive capabilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a primary objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and development jobs throughout 37 nations. [4]
The timeline for attaining AGI remains a subject of ongoing debate among researchers and specialists. As of 2023, some argue that it may be possible in years or years; others keep it may take a century or longer; a minority think it might never be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed concerns about the quick progress towards AGI, suggesting it might be accomplished sooner than numerous expect. [7]
There is argument on the exact definition of AGI and concerning whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually stated that mitigating the risk of human extinction presented by AGI ought to be an international top priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one specific problem but lacks basic cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as humans. [a]
Related concepts consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is a lot more generally smart than human beings, [23] while the idea of transformative AI relates to AI having a big impact on society, for example, comparable to the farming or industrial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, competent, expert, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outperforms 50% of skilled adults in a broad range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a limit of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular approaches. [b]
Intelligence traits
Researchers usually hold that intelligence is needed to do all of the following: [27]
factor, use strategy, resolve puzzles, and make judgments under uncertainty
represent knowledge, including typical sense understanding
strategy
find out
- interact in natural language
- if necessary, integrate these abilities in conclusion of any provided objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as creativity (the capability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that show much of these abilities exist (e.g. see computational imagination, automated reasoning, decision support system, robot, evolutionary computation, smart representative). There is debate about whether modern AI systems possess them to a sufficient degree.
Physical traits
Other abilities are considered desirable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and control objects, change location to check out, etc).
This includes the capability to discover and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate objects, modification place to explore, etc) can be desirable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and thus does not demand a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have been thought about, including: [33] [34]
The idea of the test is that the maker has to attempt and pretend to be a guy, by answering concerns put to it, and it will just pass if the pretence is fairly persuading. A significant part of a jury, who must not be skilled about devices, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to carry out AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to need basic intelligence to solve along with humans. Examples include computer system vision, natural language understanding, and dealing with unanticipated circumstances while resolving any real-world problem. [48] Even a particular task like translation requires a device to check out and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently replicate the author's original intent (social intelligence). All of these problems need to be fixed all at once in order to reach human-level device efficiency.
However, much of these tasks can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous benchmarks for reading comprehension and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were persuaded that synthetic basic intelligence was possible which it would exist in just a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the job of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He said in 1967, "Within a generation ... the problem of developing 'synthetic intelligence' will substantially be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became obvious that scientists had actually grossly ignored the problem of the job. Funding agencies ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a table talk". [58] In action to this and the success of professional systems, both industry and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI scientists who forecasted the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI scientists had a reputation for making vain guarantees. They became reluctant to make forecasts at all [d] and prevented reference of "human level" synthetic intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven outcomes and business applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is heavily moneyed in both academic community and industry. As of 2018 [update], development in this field was considered an emerging pattern, and a fully grown stage was expected to be reached in more than ten years. [64]
At the turn of the century, lots of traditional AI scientists [65] hoped that strong AI might be established by combining programs that fix numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to synthetic intelligence will one day meet the traditional top-down route majority way, prepared to supply the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually just one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, since it appears arriving would simply total up to uprooting our symbols from their intrinsic meanings (therefore simply minimizing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research study
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to please goals in a broad range of environments". [68] This kind of AGI, defined by the ability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor lecturers.
Since 2023 [update], a little number of computer scientists are active in AGI research, and numerous contribute to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually find out and innovate like human beings do.
Feasibility
Since 2023, the development and potential accomplishment of AGI remains a topic of extreme argument within the AI community. While conventional consensus held that AGI was a far-off goal, recent advancements have led some researchers and market figures to claim that early forms of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and basically unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between contemporary computing and human-level synthetic intelligence is as large as the gulf between existing area flight and practical faster-than-light spaceflight. [80]
A more challenge is the lack of clarity in specifying what intelligence requires. Does it need awareness? Must it show the ability to set goals along with pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence require clearly replicating the brain and its specific faculties? Does it need feelings? [81]
Most AI researchers think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that today level of development is such that a date can not properly be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 suggested that the average price quote among experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the exact same concern however with a 90% confidence instead. [85] [86] Further existing AGI progress factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it could fairly be deemed an early (yet still insufficient) version of an general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has currently been accomplished with frontier models. They wrote that hesitation to this view comes from 4 main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 also marked the introduction of big multimodal designs (large language models efficient in processing or producing numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of models that "spend more time thinking before they react". According to Mira Murati, this capability to think before responding represents a brand-new, additional paradigm. It improves model outputs by investing more computing power when generating the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the company had actually achieved AGI, specifying, "In my opinion, we have currently achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than the majority of humans at many tasks." He likewise resolved criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific method of observing, assuming, and validating. These statements have stimulated dispute, as they depend on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate exceptional flexibility, they might not totally satisfy this requirement. Notably, Kazemi's remarks came shortly after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's tactical intents. [95]
Timescales
Progress in expert system has traditionally gone through periods of rapid development separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to develop area for further progress. [82] [98] [99] For instance, the hardware offered in the twentieth century was not adequate to execute deep knowing, which requires large numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a really flexible AGI is constructed vary from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually provided a vast array of viewpoints on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the beginning of AGI would happen within 16-26 years for contemporary and historical forecasts alike. That paper has been slammed for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard technique used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was regarded as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in very first grade. A grownup pertains to about 100 on average. Similar tests were carried out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in carrying out numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and showed human-level efficiency in tasks covering numerous domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 might be thought about an early, insufficient variation of artificial basic intelligence, emphasizing the requirement for additional exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things could in fact get smarter than individuals - a couple of people thought that, [...] But the majority of people believed it was method off. And I believed it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The progress in the last few years has actually been quite incredible", and that he sees no reason it would decrease, expecting AGI within a decade or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most appealing path to AGI, [116] [117] whole brain emulation can function as an alternative approach. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and after that copying and replicating it on a computer system or another computational device. The simulation design should be sufficiently loyal to the original, so that it acts in almost the same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has been talked about in synthetic intelligence research [103] as a technique to strong AI. Neuroimaging innovations that might provide the needed in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will end up being available on a comparable timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, a really effective cluster of computers or GPUs would be required, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by adulthood. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the needed hardware would be readily available sometime between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established an especially comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell model presumed by Kurzweil and used in many present synthetic neural network executions is basic compared with biological neurons. A brain simulation would likely have to capture the detailed cellular behaviour of biological nerve cells, currently comprehended only in broad overview. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's estimate. In addition, the estimates do not represent glial cells, which are known to play a role in cognitive processes. [125]
A fundamental criticism of the simulated brain technique obtains from embodied cognition theory which asserts that human personification is an important element of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any completely practical brain model will require to include more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical perspective
"Strong AI" as specified in philosophy
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) imitate it believes and has a mind and consciousness.
The first one he called "strong" because it makes a more powerful declaration: it presumes something unique has actually happened to the maker that exceeds those abilities that we can check. The behaviour of a "weak AI" machine would be specifically identical to a "strong AI" machine, however the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most artificial intelligence researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it in fact has mind - undoubtedly, there would be no way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different significances, and some elements play considerable functions in science fiction and the ethics of expert system:
Sentience (or "extraordinary consciousness"): The capability to "feel" perceptions or emotions subjectively, instead of the capability to reason about perceptions. Some theorists, such as David Chalmers, utilize the term "awareness" to refer specifically to phenomenal awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience arises is called the tough issue of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had achieved sentience, though this claim was extensively contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, specifically to be consciously aware of one's own thoughts. This is opposed to merely being the "topic of one's thought"-an operating system or debugger has the ability to be "conscious of itself" (that is, to represent itself in the same way it represents everything else)-but this is not what individuals normally mean when they use the term "self-awareness". [g]
These characteristics have an ethical dimension. AI life would generate concerns of well-being and legal defense, likewise to animals. [136] Other elements of awareness related to cognitive abilities are also appropriate to the principle of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such objectives, AGI could assist mitigate various problems on the planet such as cravings, hardship and health issue. [139]
AGI might enhance productivity and performance in most jobs. For example, in public health, AGI might speed up medical research, especially against cancer. [140] It might look after the senior, [141] and equalize access to rapid, top quality medical diagnostics. It might provide enjoyable, cheap and individualized education. [141] The requirement to work to subsist could become outdated if the wealth produced is effectively redistributed. [141] [142] This also raises the concern of the place of human beings in a radically automated society.
AGI might likewise help to make logical choices, and to prepare for and avoid catastrophes. It could also help to gain the benefits of potentially catastrophic innovations such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's main goal is to prevent existential catastrophes such as human termination (which could be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take measures to considerably lower the risks [143] while minimizing the effect of these procedures on our lifestyle.
Risks
Existential threats
AGI may represent multiple kinds of existential risk, which are dangers that threaten "the early extinction of Earth-originating smart life or the permanent and drastic destruction of its capacity for desirable future development". [145] The danger of human termination from AGI has actually been the topic of lots of debates, but there is likewise the possibility that the advancement of AGI would lead to a permanently flawed future. Notably, it might be used to spread and maintain the set of worths of whoever develops it. If mankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could help with mass monitoring and brainwashing, which might be used to produce a steady repressive around the world totalitarian routine. [147] [148] There is also a threat for the machines themselves. If devices that are sentient or otherwise worthy of ethical factor to consider are mass produced in the future, participating in a civilizational path that forever overlooks their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI might enhance mankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential threat for humans, which this danger needs more attention, is controversial but has actually been backed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of enormous benefits and risks, the experts are undoubtedly doing whatever possible to guarantee the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of mankind has actually often been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence allowed mankind to dominate gorillas, which are now susceptible in methods that they could not have actually prepared for. As an outcome, the gorilla has actually become an endangered types, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humankind which we must beware not to anthropomorphize them and translate their intents as we would for human beings. He stated that people will not be "wise enough to develop super-intelligent devices, yet extremely dumb to the point of providing it moronic goals with no safeguards". [155] On the other side, the principle of instrumental merging suggests that practically whatever their objectives, smart representatives will have factors to attempt to make it through and get more power as intermediary actions to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are concerned about existential danger supporter for more research into fixing the "control issue" to respond to the question: what kinds of safeguards, algorithms, or architectures can developers carry out to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, instead of harmful, manner after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of safety precautions in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can present existential danger likewise has detractors. Skeptics normally say that AGI is unlikely in the short-term, or that issues about AGI distract from other problems associated with current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people outside of the innovation industry, existing chatbots and LLMs are already perceived as though they were AGI, resulting in more misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the communication campaigns on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, released a joint statement asserting that "Mitigating the threat of extinction from AI need to be a global priority alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, ability to make decisions, to user interface with other computer tools, however also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably bad if the machine-owners successfully lobby versus wealth redistribution. So far, the trend seems to be toward the second alternative, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and beneficial AI positioning - AI conformance to the desired objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of expert system to play different video games Generative expert system - AI system efficient in producing content in action to prompts Human Brain Project - Scientific research project Intelligence amplification - Use of info innovation to augment human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving several machine discovering tasks at the very same time. Neural scaling law - Statistical law in maker knowing. Outline of synthetic intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Artificial intelligence method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically developed and optimized for synthetic intelligence. Weak expert system - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room. ^ AI creator John McCarthy composes: "we can not yet define in basic what type of computational treatments we wish to call intelligent. " [26] (For a conversation of some meanings of intelligence used by synthetic intelligence scientists, see viewpoint of expert system.). ^ The Lighthill report specifically slammed AI's "grandiose objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being identified to money only "mission-oriented direct research, instead of fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the remainder of the employees in AI if the creators of brand-new basic formalisms would reveal their hopes in a more protected kind than has sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that makers could possibly act smartly (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are really believing (instead of simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic basic intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and cautions of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real hazard is not AI itself however the way we release it. ^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential dangers to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI should be a worldwide top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts alert of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based on the subjects covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of difficult tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers avoided the term synthetic intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite development in maker intelligence, artificial general intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of expert viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a happy medium between narrow and general AI. ^ Quach, Katyanna. "A developer developed an AI chatbot utilizing GPT-3 that assisted a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to managing robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'simply a few years,' states CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, mariskamast.net The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: higgledy-piggledy.xyz Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: library.kemu.ac.ke a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured however artificial intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI termination risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their tasks affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal fundamental earnings due to the fact that 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can fix problems and attain objectives on the planet in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple adequate to be understandable will not be made complex enough to act wisely, while any system complicated enough to behave intelligently will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological animals, factor and purpose come from acting on the planet and experiencing the effects. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on federal governments driven by campaign finance contributions [from tech companies] to press back.' ... Marcus information the demands that residents must make of their federal governments and the tech business. They consist of transparency on how AI systems work; payment for individuals if their information [are] used to train LLMs (big language design) s and the right to grant this usage; and the capability to hold tech companies liable for the damages they cause by getting rid of Section 230, imposing money penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] an expert licensing program for engineers that would work in a similar way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers also swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled people for decades, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models can unbelievable accomplishments, their capabilities are very much limited by the quantity of context they get. This [...] could trigger [troubles] for researchers who wish to use them to do things such as examine ancient languages. In some cases, there are couple of historic records on long-gone civilizations to act as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create fake videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean practical videos produced utilizing expert system that really deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their function better looks like that of cartoons, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to factor realistically and tried to count on its huge database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful however unreliable. Rules-based systems can not deal with situations their developers did not prepare for. Learning systems are limited by the data on which they were trained. AI failures have actually currently resulted in catastrophe. Advanced auto-pilot functions in cars, although they carry out well in some scenarios, have driven cars without warning into trucks, concrete barriers, and parked vehicles. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the risks are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: wiki.fablabbcn.org James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.