Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
B
baitshepegi
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 6
    • Issues 6
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Clemmie Eliott
  • baitshepegi
  • Issues
  • #6

Closed
Open
Opened Mar 01, 2025 by Clemmie Eliott@clemmieeliott
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to help with the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are defined in AI research study, making published research study more easily reproducible [24] [144] while providing users with an easy interface for connecting with these environments. In 2022, new developments of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on computer game [147] using RL algorithms and research study generalization. Prior RL research focused mainly on enhancing representatives to resolve single tasks. Gym Retro offers the ability to generalize between video games with similar concepts but different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents initially do not have understanding of how to even walk, however are offered the goals of learning to move and to push the opposing representative out of the ring. [148] Through this adversarial knowing process, the agents discover how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and put in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had actually learned how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors in between representatives could create an intelligence "arms race" that might increase a representative's capability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that learn to play against human players at a high ability level entirely through experimental algorithms. Before becoming a team of 5, the very first public demonstration occurred at The International 2017, the yearly best championship competition for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually discovered by playing against itself for two weeks of real time, which the learning software application was a step in the direction of producing software that can manage intricate tasks like a surgeon. [152] [153] The system utilizes a form of reinforcement learning, as the bots learn in time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete team of 5, and they had the ability to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert players, but wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champions of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public look came later that month, where they played in 42,729 overall video games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer shows the obstacles of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has shown making use of deep reinforcement learning (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine discovering to train a Shadow Hand, a human-like robot hand, to manipulate physical objects. [167] It finds out entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the item orientation problem by utilizing domain randomization, a simulation approach which exposes the learner to a range of experiences instead of trying to fit to reality. The set-up for Dactyl, aside from having motion tracking video cameras, also has RGB cameras to allow the robotic to control an approximate things by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl might fix a Rubik's Cube. The robotic had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of generating gradually more challenging environments. ADR varies from manual domain randomization by not requiring a human to define randomization varieties. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his coworkers, and published in preprint on OpenAI's website on June 11, 2018. [173] It demonstrated how a generative model of language might obtain world understanding and procedure long-range dependences by pre-training on a diverse corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language design and the follower to OpenAI's initial GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just restricted demonstrative versions initially released to the general public. The complete variation of GPT-2 was not immediately released due to issue about prospective misuse, consisting of applications for composing fake news. [174] Some professionals expressed uncertainty that GPT-2 positioned a significant hazard.

In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to detect "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language model. [177] Several websites host interactive presentations of various instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose learners, shown by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI stated that the complete version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 designs with as few as 125 million criteria were likewise trained). [186]
OpenAI specified that GPT-3 was successful at certain "meta-learning" tasks and might generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing between English and Romanian, and between English and German. [184]
GPT-3 drastically improved benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or coming across the essential capability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not right away released to the public for issues of possible abuse, although OpenAI prepared to enable gain access to through a paid cloud API after a two-month totally free private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has additionally been trained on code from 54 million GitHub repositories, [192] [193] and bytes-the-dust.com is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can create working code in over a dozen programs languages, the majority of efficiently in Python. [192]
Several issues with glitches, design defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of releasing copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would stop support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar test with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise check out, analyze or create approximately 25,000 words of text, and compose code in all major programming languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caution that GPT-4 retained some of the problems with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to expose different technical details and data about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained advanced results in voice, larsaluarna.se multilingual, and vision criteria, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially useful for enterprises, startups and designers looking for to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have actually been developed to take more time to think about their actions, resulting in greater accuracy. These models are especially efficient in science, coding, and reasoning tasks, wiki.asexuality.org and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI likewise revealed o3-mini, a lighter and much faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the opportunity to obtain early access to these models. [214] The model is called o3 rather than o2 to prevent confusion with telecommunications companies O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 model to carry out substantial web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to analyze the semantic similarity between text and images. It can notably be utilized for image category. [217]
Text-to-image

DALL-E

in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and create matching images. It can produce images of reasonable items ("a stained-glass window with an image of a blue strawberry") as well as objects that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded version of the design with more realistic outcomes. [219] In December 2022, OpenAI published on GitHub software for Point-E, a brand-new primary system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful design better able to produce images from complicated descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can generate videos based upon brief detailed triggers [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The optimum length of produced videos is unidentified.

Sora's development group called it after the Japanese word for "sky", to signify its "limitless imaginative capacity". [223] Sora's innovation is an adaptation of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos licensed for that function, however did not reveal the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the public on February 15, 2024, specifying that it could create videos up to one minute long. It likewise shared a technical report highlighting the methods utilized to train the model, and the design's abilities. [225] It acknowledged a few of its imperfections, consisting of battles simulating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", but noted that they must have been cherry-picked and may not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have revealed substantial interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the innovation's ability to create sensible video from text descriptions, mentioning its potential to revolutionize storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had chosen to stop briefly strategies for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of diverse audio and is likewise a multi-task design that can perform multilingual speech acknowledgment in addition to speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to start fairly but then fall into mayhem the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs tune samples. OpenAI specified the songs "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the songs lack "familiar larger musical structures such as choruses that repeat" which "there is a considerable gap" between Jukebox and human-generated music. The Verge mentioned "It's technologically impressive, even if the results sound like mushy variations of songs that might feel familiar", while Business Insider mentioned "remarkably, a few of the resulting songs are catchy and sound genuine". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches devices to debate toy problems in front of a human judge. The purpose is to research study whether such a technique may help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of eight neural network models which are often studied in interpretability. [240] Microscope was created to evaluate the features that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool built on top of GPT-3 that offers a conversational user interface that allows users to ask questions in natural language. The system then responds with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: clemmieeliott/baitshepegi#6