Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
S
stmlnportal
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 52
    • Issues 52
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aja Haase
  • stmlnportal
  • Issues
  • #42

Closed
Open
Opened May 27, 2025 by Aja Haase@ajahaase264155
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to facilitate the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making released research more easily reproducible [24] [144] while supplying users with a simple user interface for engaging with these environments. In 2022, brand-new advancements of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on video games [147] using RL algorithms and research study generalization. Prior RL research focused mainly on enhancing agents to fix single jobs. Gym Retro offers the capability to generalize in between video games with comparable principles but different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot representatives initially lack knowledge of how to even walk, however are offered the objectives of finding out to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives learn how to adjust to changing conditions. When a representative is then removed from this virtual environment and placed in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had discovered how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition between agents could produce an intelligence "arms race" that could increase a representative's capability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that discover to play against human gamers at a high skill level completely through experimental algorithms. Before ending up being a group of 5, the very first public presentation occurred at The International 2017, the annual premiere champion tournament for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually discovered by playing against itself for two weeks of real time, which the learning software was an action in the instructions of producing software application that can manage complex jobs like a cosmetic surgeon. [152] [153] The system uses a kind of support learning, as the bots learn gradually by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full group of 5, and they were able to beat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional players, but wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually demonstrated the usage of deep support knowing (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device finding out to train a Shadow Hand, a human-like robot hand, to control physical objects. [167] It finds out entirely in simulation using the same RL algorithms and training code as OpenAI Five. OpenAI tackled the item orientation problem by using domain randomization, a simulation method which exposes the student to a range of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having movement tracking cameras, likewise has RGB electronic cameras to allow the robotic to control an approximate object by seeing it. In 2018, OpenAI revealed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could fix a . The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of generating progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI designs developed by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation

The company has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative design of language might obtain world understanding and procedure long-range dependences by pre-training on a varied corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's initial GPT model ("GPT-1"). GPT-2 was announced in February 2019, with only restricted demonstrative variations at first released to the public. The full variation of GPT-2 was not immediately released due to concern about possible abuse, consisting of applications for composing fake news. [174] Some experts expressed uncertainty that GPT-2 presented a substantial hazard.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural fake news". [175] Other scientists, such as Jeremy Howard, alerted of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several websites host interactive presentations of various instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, shown by GPT-2 attaining state-of-the-art precision and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI specified that the full variation of GPT-3 contained 175 billion criteria, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 designs with as couple of as 125 million parameters were also trained). [186]
OpenAI stated that GPT-3 prospered at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or encountering the fundamental capability constraints of predictive language models. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained model was not instantly released to the general public for concerns of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month totally free private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the design can produce working code in over a lots programs languages, most successfully in Python. [192]
Several issues with problems, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been implicated of emitting copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the upgraded technology passed a simulated law school bar exam with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise check out, analyze or generate as much as 25,000 words of text, and compose code in all major programming languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based version, with the caution that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has actually decreased to expose numerous technical details and data about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained cutting edge results in voice, multilingual, and vision standards, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially beneficial for enterprises, start-ups and developers looking for to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have actually been created to take more time to believe about their responses, leading to higher precision. These designs are particularly efficient in science, coding, and reasoning tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI also unveiled o3-mini, a lighter and quicker version of OpenAI o3. As of December 21, 2024, this design is not available for public use. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these designs. [214] The model is called o3 rather than o2 to avoid confusion with telecommunications services provider O2. [215]
Deep research study

Deep research study is a representative developed by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to perform substantial web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to examine the semantic resemblance between text and images. It can especially be used for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of an unfortunate capybara") and create matching images. It can create images of practical objects ("a stained-glass window with a picture of a blue strawberry") along with things that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded version of the model with more realistic outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a brand-new rudimentary system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective model much better able to create images from complicated descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based on short detailed triggers [223] as well as extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of generated videos is unknown.

Sora's development group named it after the Japanese word for "sky", to symbolize its "limitless imaginative capacity". [223] Sora's innovation is an adjustment of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system using publicly-available videos along with copyrighted videos certified for that function, but did not reveal the number or the exact sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could generate videos up to one minute long. It likewise shared a technical report highlighting the techniques used to train the model, and the design's capabilities. [225] It acknowledged a few of its shortcomings, including battles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "impressive", but noted that they need to have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have actually revealed considerable interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the technology's ability to create sensible video from text descriptions, citing its possible to change storytelling and material development. He said that his excitement about Sora's possibilities was so strong that he had chosen to pause prepare for broadening his Atlanta-based film studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a big dataset of diverse audio and is also a multi-task design that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a song generated by MuseNet tends to start fairly however then fall into turmoil the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the web psychological thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI stated the songs "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the songs lack "familiar bigger musical structures such as choruses that repeat" which "there is a considerable space" in between Jukebox and it-viking.ch human-generated music. The Verge mentioned "It's highly outstanding, even if the results seem like mushy versions of songs that may feel familiar", while Business Insider stated "remarkably, a few of the resulting tunes are catchy and sound legitimate". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches devices to dispute toy issues in front of a human judge. The function is to research whether such a method might help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and nerve cell of 8 neural network designs which are typically studied in interpretability. [240] Microscope was produced to evaluate the functions that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, different variations of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool built on top of GPT-3 that offers a conversational interface that permits users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: ajahaase264155/stmlnportal#42